Screenshot of GATE Tutor Weekly Test

OFFICE OF DEAN STUDENTS AFFAIRS GEETANJALI INSTITUTE OF TECHNICAL STUDIES

Airport Road, Dabok, Udaipur

Ref No: GITS/DEAN-SA/03-19-03-60/2020

Date: 24-01-2020

CIRCULAR

FELICITATION CEREMONY OF GITS ACHIEVERS

This is to inform all the faculty & staff members that GITS Felicitation Ceremony is scheduled on 28th January 2020 in CSE Seminar hall at

11:00 AM – 12:00 Noon (For Academic & NPTEL Achievers) & 01:00 PM - 02:00 PM (For Sports Achievers).

Following committee is constituted for smooth conduction of the ceremony.

S.No	Name of Committee	Name of Faculty Members	Responsibility
1.	Comparing & Event execution.	Mrs Anjali Dhabai	Lamp Lightning.Bouquet
2.	Media & News	Mr V Maurya	Preparing News for Paper.
3.	Award Distribution	Dr. Rajbeer Sharma Mr. Ronak Shrimal Dr. Manoj Singh	 To arrange for distribution of Certificates & Memento to Students.
4.	Print and Publicity Committee	Dr. Vishal Jain Mr. Ronak Shrimal Mr. Chintal Patel	 Flexes printing Certificates printing Memento/Troffees/Meda Instagram Live streaming
5.	Discipline	Mr. Zuber Khan Dr Manoj Singh All NPTEL coordinators.	
6.	Certificate Preparation	Dr. Charu Khamesra Dr. Vishal Jain	To prepare certificates.
7.	Transport	Mr Gaurav Agarwal	Buses for all the students.

Dean-SA

Copy to:

- 1. The Director MBA
- 2. The Finance controller
- 3. All HoDs & Faculty members for Circulation.
- 4. Proctor
- 5. Sports Officer
- 6. Security Incharge
- 7. All the Concerned

38 dalid like tilbe di Rochika Studies in communication de la comm

Report

on

WEBINAR held on 10th Aug. 2020

"Environmental Impact Assessment and Procedure of EIA in India"

A webinar has been conducted on "Environmental Impact Assessment and Procedure of EIA in India" for the students of Civil Engineering Branch by Dr. Samir Bajpai, Prof. Dept. of Civil Engineering NIT Raipur.

This session has been conducted on Digital platform Google Meet and hosted by Mr Jagdish Lohar, Faculty CED.

The session was started with by a brief introduction of Dr. Samir Bajpai by Head of Department Dr Manish Varma to the attendees. More than 60 plus students have attended the webinar and learnt the technical know-how about Environmental Impact Assessment and it procedure.

DIRECTOR

Geetanjali Institute of Technical Studies
Dabok, UDAIPUR-313022 (Rai.)

In this webinar, students were trained about the fundamentals of EIA. The role of EIA in our society is very crusial and it is the need of the time. Students were taught to give due concern to the nature all the time whenever they are starting a new idea of business.

Also the problems associated with the EIA procedures had been clarified by Dr. Bajpai.

During this webinar, the students has also asked their doubt about the topic and these doubt has been cleared in lucid manner by Dr. Sameer Bajpai.

The webinar has ended with clappes from the attandees and vote of thanks to Dr. Samir Bajpai by HOD-CE, Dr. Manish Varma.

Ceetanial Institute of Technical Studies

Ceetanial Institute of Technical Studies

Cabook, UDA PUR-3, 13022 (Red.)

An Expert Talk on HR Trends in COVID - 19

BY: Ms. Megha Gupta, HR Director, Finserv

Geetanjali Institute of Technical Studies has organized an An ExpertTalk on HR Trends in COVID - 19 with Ms. Megha Gupta, Human Resources Director, Finserv on 7th Aug 2020 at 11 AM.

Ms. Megha Gupta is the Human Resources Director at Fiserv where she leads the team of business partners and culture and change management supporting the transformation across the company.

Ms. Gupta in her interaction with students emphasised over flexibility of institutions and employees. She also suggested students for regular updating and enhancing their employability skills.

E- Certificate were given to all the participants.

EXPERT WEBINAR

On

"Entrepreneurship 101: Zero to Startup"

BY: Mr. Rohit Kashyap Founder Maytree School of Entrepreneurship

Geetanjali Institute of Technical Studies (Department of Management Studies) is organizing an Expert Webinar with Mr. Rohit Kashyap, Founder, Maytree School of Entrepreneurship on "Entrepreneurship 101: Zero to Startup" on 30th June 2020 from 11:00 AM onwards.

Mr. Rohit Kashyap is a 18-year-old who chose the Larger Cause! Long luist of awards of Mr. Rohit is as follows-

Karmaveer Chakra Awardee By United Nations | Entrepreneur! Startup Advisor | Mentor | Social Media Strategist | Top 5 Youngest Entrepreneurs of India 2020 According to Yourstory & Times of India Best Young Entrepreneur of 2019 According to Google (Top Featured Article) | Startup Mentor (Science & Tech Department, Govt of India) | Chief Of Tech Kreeda Bharti Bihar (A sports wing of RSS) | Chief of Tech Friends for Patna (A non for Profit Organization).

Direction of Festives and Property of the Property of Section 1981 (1981) and the Property of the Property of

NPTEL Online Certification

(Funded by the Ministry of HRD, Govt. of India)

This certificate is awarded to

MILIND JAIN

for successfully completing the course

Programming in C++

with a consolidated score of 75 %

Online Assignments 21.92/25 Proctored Exam 53.12/75 Geetanjali Institute of Technical Studies Dabok, UDAIPUD-213022 (Reg.) DIRECTOR

Prof. Anupam Basu NPTEL Coordinator IIT Kharagpur

Total number of candidates certified in this course: 2394

(8 week course) **Aug-Sep 2018**

A.GOSHAM

Continuing Education, IIT Kharagpur Prof. Adrijit Goswami

Indian Institute of Technology Kharagpur

Aayesha Bi

has successfully completed

Programming Foundations with JavaScript, HTML and CSS

an online non-credit course authorized by Duke University and offered through Coursers

Recoa

Susan H. Rodger, Professor of the Practice, Computer Science Exhert Duvall, Lecturer, Computer Science

Owen Astrachan, Professor of the Practice, Compuser Science Andrew B. Hilton, Attituant Professor of the Practice, Electrical and Computer Engineering

VERIFICATE OF ACHIEVEMENT

This is to certify that

Aayesha Bi

successfully completed and received a passing grade in

6.002.1x: Circuits and Electronics 1: Basic Circuit Analysis

a course of study offered by MITx, an online learning initiative of the Massachusetts Institute of Technology through edx.

Geetanjali Institute of Technical Studies
Dabok, UDAIPUR-313022 (Rai.)

VERIFIED CERTIFICATE

VALUD (FRIENCATE ED 425fd4a6777554a3dafd43cb2ebf2f2a7

Anant Agarwal

Professor, Department of Bectifical Engineering, and Computer Science Mossocheretts Institute of Technology.

Dum Low

Bonnie Lam

Graduate instructor, Department of Bectrical Engineering and Computer Science Mossocialisms instructory Forensing:

Langis Lamon

Sanjay Sarma

Vice President for Open Learning Massachusetts Institute of Technology

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

TEACHER'S ACADEMIC RECORD BOOK

Name of the Teacher:	Tina Bhati
Designation:	Assistant Professor
Department:	Electronics & Communication
Course:	B. Tech.
Subject with RTU Code:	5EC4-03
Department:	Electronics & Communication
NBA Code of Course	CO353
Class:	III Year, V Semester
(Year/Semester/Section)	
Academic Year and Term (Even/Odd)	2019-20 (Odd) DIRECTOR OR Technical Studies Geetanial Institute of Technical (Raj.) Dabok, UDAIPUR-313022 (Raj.)
	Geetanian, UDAINA

Website: www.gits.ac.in

E-mail: dean-academic@gits.ac.in

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))
DABOK, UDAIPUR, RAJASTHAN 313022

INDEX - COURSE FILE

	TI (DLIA	COURSE	TILL			
S. No.	CONTENT / ITEM NO.	PAGE NO.		REMARKS		
		- 1102110.	FACULTY	HOD	DEAN	1
1	Vision And Mission of The Institute	3	Forah	or bu		
2	Vision And Mission of The Department	3	Forati	ordin		
3	Program Educational Objective of Department (PEO's)	3	-Brah.	onc Ju		1
4	Program Outcomes of Department (PO's)	4	Foral	ox yu		1
5	Course Outcome (COs)	5	Enah	VIING		1
6	COs mapping with Pos and PSOs	5	Frah	1271		
7	Academic Calendar	6	Torah'	v du		1
8	Evaluation Scheme	7	Forah	V 1/4		
9	Course Syllabus	8	- Forali	114		1
10	Prescribed Books	8	Ford	Attach Mus		,
11	Copy Of Time Table	9	Fral	111		
12	Course Schedule Plan	10	Frah	Lim		
13	Tutorial Sheet (Unit Wise)	NA		Lu		
14	Assignment Sheet (Unit Wise)	11	Forah	14262		
15	Quiz Questions (One From Each Unit)	15	Final	Jin		
16	Question Papers of Mid Term Exam-I	20	Frah'	Liv		
17	Marks and Gap Analysis in Mid Term I	21	Frah'	Lu		
18	Remedial Action Taken to Remove the Gaps after mid Term I	22	Fra	Lin		
19	Question Papers of Mid Term Exam-II	23	Forah.	Liw		į
20	Marks and Gap Analysis in Mid Term II	24	torah.	Liw		1
21	Remedial Action Taken to Remove the Gaps after mid Term II	25	Frat.	Sull		
22	Model Question Paper With Key Solution	26	Final.	Luis		
23	University Question Paper (Last one year)	36	Frat	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
24	Student Performance Report	38	16	~1.		
25	Result Analysis	39				

DIRECTOR
DIRECTOR
Technical Studies
Geetanjali Institute of Technical Studies
Dabok, UDAIPUR-313022 (Raj.)

Name of faculty: Tina Bhati Subject with Code: 5EC3-04

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

VISSION & MISSION OF INSTITUTE VISION

To achieve excellence in technical and management education through quality teaching research and innovations

MISSION

- M1: To provide an excellent learning environment to produce socially responsible and productive technical professionals.
- M2: To set up the state-of-the-art facilities for quality education and innovation.
- M3: To impart knowledge & Skills leading to shaping a budding manager as a quality executive.
- M4: To encourage for life-long learning and team-based problem solving through learning environment.

VISION & MISSION OF DEPARTMENT

VISION

To provide quality education through research & innovation to cater the need of industry & society.

MISSION

To nurture knowledge of students in theoretical and practical aspects in collaboration with industries. To inculcate the students towards research and innovation to fulfill the need of industry & society. To develop socially responsible professionals with values and ethics.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Programme Educational Objectives of the programme offered by the department are listed below:

PEO1: Deliver comprehensive knowledge and skills for successful career in the industries.

PEO2: To Provide conducive environment for becoming a successful entrepreneur and life-long learning.

PEO3: Inculcate research through innovative solution of the real life problems with help of industries.

PROGRAM SPECIFIC OUTCOMES (PSO's)

PSO1: Professional Skills: The ability to understand, analyze and develop electronic systems in the areas related to hardware and software development, communication systems and networking for efficient design of electronic-based systems of varying complexity.

PSO2: Problem-Solving Skills: The ability to apply standard practices and strategies in electronic system project development on both hardware and software environments to deliver a quality product for business success.

PSO3: Successful Career and Entrepreneurship: The ability to employ modern electronic solutions on different platforms, in creating innovative career paths to be an entrepreneur, and a zest for higher studies.

Name of faculty: Tina Bhati Subject with Code: 5EC3-04

· 大学のでは、 では、 できるないのでは、 はっているのでは、 できるないのです。 できるないのでは、 はいのでは、 はいの

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

PROGRAMME OUTCOMES (POs)

A student will develop:

- **PO1. ENGINEERING KNOWLEDGE:** An ability to apply knowledge of Mathematics, Science and Engineering Fundamentals in Electronics and Communication Engineering.
- **PO2. PROBLEM ANALYSIS:** An ability to analyze and interpret data by designing and conducting experiments. Develop the knowledge of developing algorithms, designing, implementation and testing applications in electronics and communication related areas.
- PO3. DESIGN/ DEVELOPMENT OF SOLUTION: An ability to Design a system Component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- **PO4. CONDUCTION OF INVESTIGATION OF COMPLEX PROBLEMS:** An ability to Identify, formulate and solve engineering problems.
- **PO5. MODERN TOOL USAGE:** An ability to use the techniques, skills and modern engineering tools necessary for engineering practice.
- **PO6. THE ENGINEERING AND SOCIETY:** Broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.
- **PO7. ENVIRONMENT & SUSTAINABILITY:** Understand the impact of professional engineering solution in societal and environmental contexts, and demonstrate the knowledge of, and need of sustainable development.
- PO8. ETHICS: An ability to understand the professional, social and ethical responsibility.
- **PO9. INDIVIDUAL AND TEAM WORK:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10.COMMUNICATION:** An ability to Communicate effectively in order to succeed in their profession such as, being able to write effective reports and design documentation, make effective presentations.
- PO11.PROJECT MANAGEMENT & FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in team, to manage projects and in multidisciplinary environment.

PO12.LIFE-LONG LEARNING: Recognize the need and an ability to engage in life-long learning.

Geetanjali Institute of Technical Studies
Dabok, UDAIPUR-313022 (Raj.)

Name of faculty: Tina Bhati Subject with Code: 5EC3-04

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))
DABOK, UDAIPUR, RAJASTHAN 313022

COURSE OUTCOMES (COs)

CO353.1	Identify the concept of open and closed loop control systems and implement the mathematical models of physical systems and tools such as SFG and block diagram to analyze the system.
CO353.2	Evaluate the time response of the system and stability in time by using Routh-Hurwitz criterion, Root Locus.
CO353.3	Analyze the system in frequency domain and hence predict the system stability in frequency domain using Bode plot, polar plots and Nyquist plot and also design compensator in time and frequency domain.
CO353.4	Analyze the response and stability of the system represented by state space models
CO353.5	Understand the concept of optimal control and nonlinear control.

COS MAPPING WITH POS AND PSOS

Course Outcome	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO353.1	3	3	1	1	1	0	0	0	0	0	0	1	3	2	0
CO353.2	3	3	2	2	1	0	0	0	0	0	0	1	3	1	
CO353.3	3	3	2	2	1	0	0	0	0	0	0	1	3	1	0
CO353.4	3	3	2	2	1	0	0	0	0	0	0	1	3	1	0
CO353.5	2	2	1	1	1	0	0	0	0	0	0	1	2	1	0
CO353 (AVG)	3	3	2	2	1	0	0	0	0	0	0	1	3	1	0
Final Mapping of CO353	3	3	2	2	1	0	0	0	0	0	0	1	3	1	0

DIRECTOR

DIRECTOR

Geetanjali Institute of Technical Studies

Control of Technical Studies

Name of faculty: Tina Bhati Subject with Code: 5EC3-04

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

UNIVERSITY ACADEMIC CALENDAR

	I INSTITUTE OF TECHNICAL STU DEMIC CALANDER FOR ODD S	NAME OF TAXABLE PARTY.			
PARTICULARS	B.TECH. I		в.тесн. у	B.TECH.	
Induction Program	01.08.2019 - 15.08.2019				
Commencement of Classes	16.08,2019	2,07.2019	13,7,2019	2.7.2019	
First Mid Term	30.09.2019	19,08,2019	26.08.2019	19.08.2019	
Second Mid Term	14.11.2019	04.11.2019	16.10.2019	21.10.2015	
Last Working Day	18,11,2019	16.11.2019	31,10,2019	30.10.2019	
Commencement of Practical Exams	19.11.2019	18,11,2019	25.11.2019	23.11.2019	
Commencement of Theory Exams	05,12,2019	CONTRACTOR OF THE PARTY OF THE	07.11.2019	06.11.2019	
Winter Break	25.12	2.2019 to 31.12	2019		
Commencement of Classes for next Even Semesters (2019-20)	u ·	IV	vi	УШ	
	01.01.2020	01.01.2020	09.12.2019	9.12.2019	

DIRECTOR

DIRECTOR

Geetanjali Institute of Technical Studies

Dabok, UDAIPUR-313022 (Raj.)

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))
DABOK, UDAIPUR, RAJASTHAN 313022

EVALUATION SCHEME

EAC	III '	TV	DET	CAT	I C.
FAC	UL.	II	DE I	AI	LS:

Name of the Faculty: Tina Bhati Designation: Assistant Professor

Department: ECE

1. TARGET

a) Percentage Pass: 100%b) Percentage I class: 80 %

2. COURSE PLAN

The course has both lectures and problems. During the lectures, the students are taught the basic principles of control system. During the problem sessions, fundamental problems are introduced and solved.

3. METHOD OF EVALUATION

3.1.		Continuous Assessment Examinations (Mid-Term 1, Mid-Term 2)
3.2.	$\sqrt{}$	Assignments / Seminars
3.3.		Mini Projects
3.4.		Quiz
3.5.		Others

4. List out any new topic(s) or any innovation you would like to introduce in teaching the subject in this Semester.

NIL

Georgia Institute of Technical Studies
Dabok, UDAIPUR-313022 (Raj.)

Signature of Faculty:

Signature of HOD

Name of faculty: Tina Bhati Subject with Code: 5EC3-04

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

UNIVERSITY SYLLABUS

	5EC4-03: Control system	
	redit: 3 . L+OT+OP Max. Marks: 150(IA:30, I	TE:120
S	N Contents End Term Exam:	1100
		Hours
1	Introduction: Objective, scope and outcome of the course.	1
	function. System with dead-time, System response. Control hardware and their models: potentiometers, synthros, LVDT, de and ac servomotors, tacho-generators, electro hydraulic valves, hydraulicservomotors, electro pneumatic valves, pneumatic actuators. Closed-loop systems. Block diagram and signal flow graph analysis.	8
3	Feedback control systems. Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness proportional, integral and derivative systems. Feedforward and multi-loop control configurations, stability concept, relative stability, Routhstability criterion.	7
4	Time response of second-order systems- steady-state errors and error constants. Performance specifications in time-domain, Root locus method of design (Lead and lag compensation.)	6
5	Frequency-response analysis Polar plots, Bode plot, stability in frequency domain. Nyquistplots. Nyquist stability criterion. Performance specifications in frequency-domain, Frequency domain methods of design. Compensation & their realization in time & frequency domain. Lead and Lag compensation. Op-amp based and digital implementation of compensators. Tuning of process controllers. State variable formulation and solution.	8
,	State variable Analysis- Concepts of state, state variable, state model, state modelsfor linear continuous time functions, diagonalization of transfer function, solution of state equations, concept of controllability. &observability.	6
	Introduction to Optimal control & Nonlinear control, Optimal Control problem, Regulator problem, Output regulator, treking problem. Nonlinear system - Basic concept & analysis)	6
100	Total	42

PRESCRIBED BOOKS

1. Ogata, Modern Control System, Pearson Education, 2009.

2. Nise's, Rajeev Gupta, Control System Engineering, Wiley (2011)

Geetanjali Institute of Technical Studies
Dabok, UDAIPUR-313022

Name of faculty: Tina Bhati Subject with Code: 5EC3-04

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))
DABOK, UDAIPUR, RAJASTHAN 313022

WEEKLY TIME TABLE OF THE TEACHER

First Time Table: with effect from (Date): 15^h July 2019

Day	1	2	3	4	5	6	7	8	
Monday			CS			0		0	9
Tuesday					T. P				
Wednesday	CS								
Thursday					CS				
Friday									
Saturday	CS								

Revision: 1 with effect from (Date):

Day	1	2	3	4	5	6	7	8	9
Monday									
Tuesday									
Wednesday									
Thursday									
Friday									
Saturday								_	

Revision: 2 with effect from (Date):

Day	1	2		3	4		5	6	7	Remedial Classes
Monday										
Tuesday			reak			ak				
Wednesday			ch Br			Break				
Thursday			Lunch			Tea				
Friday										
Saturday										

Name of faculty: Tina Bhati Subject with Code: 5EC3-04 DIRECTOR
DIRECTOR
Geetanjali Institute of Technical Studies
Dabok, UDAIPUR-313022 (Raj. K.

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

COURSE-PLAN

		COURSE-I LAIV			
UNIT	Lect. No.	TOPICS	Teaching Methods/ Teaching Aids	Date of Plan	Actual Date of Delivery
	1	Objective, scope and outcome of the course	WB	15-07-2019	22-07-2019
	Introduction to control problem- Industrial Control examples, Transfer function. System with dead-time, System response, Closed-loop systems and open loop system		WB	17-07-2019	22-07-2019
	3	Control hardware and their models: potentiometers, synchros, LVDT,	WB	18-07-2019	23-07-2019
I	4	dc and ac servomotors, tacho generators	WB	20-07-2019	24-07-2019
	5	Electro hydraulic valves, hydraulic servomotors, electro pneumatic valves, pneumatic actuators.	WB	22-07-2019	25-07-2019
	6	Block diagram analysis	WB	24-07-2019	26-07-2019
	7	Block diagram analysis	WB	25-07-2019	27-07-2019
	8	Signal flow graph analysis	WB	27-07-2019	30-07-2019
	9	Signal flow graph analysis	WB	29-07-2019	31-07-2019
	10	Feedback control systems- Stability, steady-state accuracy, transient accuracy	WB	31-07-2019	01-08-2019
4	11	Insensitivity and robustness.	WB	01-08-2019	06-08-2019
II	12	Feed forward and multi-loop control configurations, disturbance rejection	WB	03-08-2019	08-08-2019
	13	Proportional, integral and derivative systems.	WB	05-08-2019	09-08-2019
	14	Stability concept, relative stability, Routh stability criterion.	WB	07-08-2019	19-08-2019
	15	Routh stability criterion.	WB	08-08-2019	21-08-2019
	16	Routh stability criterion.	WB	14-08-2019	22-08-2019
	17	Time response of second-order systems	WB	17-08-2019	26-08-2019
ļ	18	Time response of second-order systems	WB	19-08-2019	04-09-2019
	19	steady-state errors	WB	21-08-2019	09-09-2019
III	20	Dynamic errors, Performance specifications in time-domain.	WB	22-08-2019	14-09-2019
	Performance specifications in time-domain, Root locus method of design.		WB	26-08-2019	16-09-2019
	22	Root locus method of design.	WB	31-08-2019	18-09-2019
I	23	Frequency-response analysis- Performance specifications in frequency-domain	WB	04-09-2019	19-09-2019
	24	Polar plots	WB	09-09-2019	23-09-2019
	25	Nyquist plots, Nyquist stability criterion	WB	11-09-2019	25-09-2019
IV	26	Bode plot	WB	12-09-2019	21-09-2019
	27	Bode plot.	WB	14-09-2019	26-09-2019
	28	Lead and Lag compensation	WB	16-09-2019	28-09-2019
	29	Compensation & their realization in time & frequency domain.	WB	18-09-2019	30-09-2019
	30	Op-amp based and digital implementation of compensators, Tuning of process controllers	WB	19-09-2019	04-10-2019
	mc mc	State variable Analysis- Concepts of state, state variable, state model,	WB	21-09-2019	05-10-2019
_	32	state models for linear continuous time functions	WB	23-09-2019	09-10-2019
V	33	state models for linear continuous time functions	WB	25-09-2019	10-10-2019
	34	solution of state equations	WB	26-09-2019	10-10-2019
-	35	observability, diagonalization of transfer function	WB	28-09-2019	11-10-2019
	36	State variable formulation and solution	WB	30-09-2019	14-10-2019
	37	Introduction to Optimal control & Nonlinear control	WB	03-10-2019	16-10-2019
-	38	Optimal Control problem	WB	05-10-2019	
IV	39 40	Regulator problem Output regulator	WB	07-10-2019	Notes
-	41	tracking problem	WB WB	09-10-2019 10-10-2019	Provided
	42	Nonlinear system – Basic concept & analysis	WB Chief	\$2-10-2019	

Signature of Faculty:

Name of faculty: Tina Bhati Subject with Code: 5EC3-04 Signature of HOD

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.)) DABOK, UDAIPUR, RAJASTHAN 313022

ASSIGNMENT I

Date of Assignment: 31/07/19

Date of Submission: 07/08/19

For the system represented by block diagram shown below, obtain the transfer function by Q.1. using block diagram reduction technique. Verify the result using signal flow graphs.

- Draw schematic diagram of a closed loop control system of your choice. Draw its block Q.2. diagram also.
- Determine the ratio Q.3. C(5) for the system shown in the following diagram

A system is represented by the following equations: Q.4.

a.
$$x = x_1 + 3\mu$$

b.
$$\frac{dx_1}{dt} = -3x_1 + x_2 + 2\mu$$

c. $\frac{dx_2}{dt} = -2x_1 + \mu$

$$c. \frac{dx_2}{dt} = -2x_1 + \mu$$

Find the transfer function $X(s)/\mu(s)$ by signal flow graph technique.

Find the transfer function of the system whose signal flow graph is as below. Q.5.

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

ASSIGNMENT UNIT -II

Date of Assignment: 18/09/19

Date of Submission: 25/09/19

The open loop transfer function of a unity feedback ac position control system is Q.1.

$$G(s) = \frac{10K}{s(1+0.1s)}$$

Find the minimum value of amplifier gain K so that when the input shaft rotates at 1/2 revolutions per second the steady state velocity error is 0.2°. With that value of K, what will be the value of damping factor and natural frequency?

A unity feedback control system has an open loop transfer function. Q.2.

$$G(s) = \frac{5}{s(s+1)}$$

Find rise time, percentage peak over shoot, peak time and settling time for a step input of 10

Determine the value of K and P of the closed loop system shown below so that maximum over Q.3. shoot in unit step response is 25% and peak time is 2 seconds. Assume $J = 1 \text{Kgm}^2$.

O.4. A unity feedback system has the forward path transfer function

$$G(s) = \frac{K_1(2s+1)}{s(5s+1)(s+1)^2}$$

The input r(t) = 1+6t is applied to the system. Determine the minimum value of K_1 if the steady error is to be less than 0.1.

Comment on the stability of a system whose characteristic equation is given below Q.5. $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$

The characteristic equation of feedback control system is Q.6. $s^4 + 20s^3 + 15s^2 + 2s + K = 0$

Determine the range of K for the system to be stable. i.

Can the system be marginally stable? If so, find the required value of K and the frequency of sustained oscillation.

Plot the root locus for a system whose forward path transfer function is Q.7.

$$(s)H(s) = \frac{K(s+1)}{s(s+2)(s^2+2s+5)}$$

Consider a unity feedback control system with the following feed forward transfer function as: Q.8.

$$G(s) = \frac{K}{s(s^2 + 4s + 8)}$$

Plot the root loci for the system.

ASSIGNMENT UNIT -III

Date of Assignment: 04/10/19

Q. 1

- Derive expression for
 - a. M_r (resonant peak)

c. W_b (bandwidth) for a second order system right institute of Technical Studies cuss the merits and demerits of frame (Regardial Institute of Technical Studies)

Discuss the merits and demerits of frequency response analysis.

State Nyquist criterion of stability. Construct the complete Nyquist plot for a unity feedback Q. 2 control system whose open loop transfer function is

Name of faculty: Tina Bhati Subject with Code: 5EC3-04

Date of Submission: 10/10/19

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

$$G(s)H(s) = \frac{K}{s(s^2 + 2s + 2)}$$

Find the maximum value of K for which the system is stable.

Sketch the Bode plot showing magnitude in dB and phase angle in degrees as a function of log Q. 3 frequency for the transfer function shown below.

$$G(s)H(s) = \frac{2000}{s(s+2)(s+100)}$$

Determine gain cross over frequency, phase crossover frequency, gain margin and phase

Consider the unity feedback control system, whose open loop transfer function is given by: 0.4

$$G(s) = \frac{as + 1}{s^2}$$

Determine the value of a, so that the phase margin is 45°.

- 0.5 Define the followings:
 - i. Gain Margin
 - ii. Phase Margin
 - Phase crossover frequency
- A unity step input is applied to a unity feedback control system having open loop transfer 0.6 function

$$G(s) = \frac{K}{s(1+sT)}$$

Determine the value of K and T to have $M_p=20\%$ and resonant frequency $W_r=6$ rad/sec. Calculate the resonant peak Mr.

ASSIGNMENT UNIT -IV

Date of Assignment: 11/10/19

Date of Submission: 18/10/19

Q. 1 Obtain a state model of the system described by the transfer function

$$\frac{Y(s)}{U(s)} = \frac{6(s+3)(s+2.5)}{(s+2)(s^2+4s+5)}$$

Q. 2 Obtain STM for the state model whose A matrix is given by

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

Determine the controllability and observability of the system described by state equations given

$$\begin{bmatrix} x_1^0 \\ x_2^0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Q. 4 The system equations are given by:

$$x(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

- Find the transfer function of the system.
- How, the solution of the state equation can be found; the state equation can be found; the state of the controllability and observability. Test for the controllability and observability for the following system:

$$x(t) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix} x(t)$$

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.)) DABOK, UDAIPUR, RAJASTHAN 313022

ASSIGNMENT UNIT -V

Date of Assignment: 16/10/19

Q. 1 What is optimal control?

Q. 2 What is non linear control system?

Date of Submission: 30/10/19

Q. 3 Explain the following in detail: tracking problem and regulator problem.

DIRECTOR Geetanjali Institute of Technical Studies Dabok, UDAIPUR-313022 (Raj.)

Name of faculty: Tina Bhati Subject with Code: 5EC3-04

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.)) DABOK, UDAIPUR, RAJASTHAN 313022

QUIZ QUESTIONS

UNIT I

- 1. An advantage of open loop system is/are?
 - simple and economical
 - ii. accurate
 - iii. reliable
 - iv. all of the above
- 2. Which system is also known as automatic control system?
 - open loop control system
 - ii. closed loop control system
 - either 1 or 2 iii.
 - nether 1 nor 2 iv.
- 3. Which of the following are the disadvantages of a closed loop control system?
 - reduces the overall gain
 - complex and costly ii.
 - iii. oscillatory response
 - all of the above iv.
- 4. By using which of the following elements, mechanical translational systems are obtained?
 - mass element i.
 - ii. spring element
 - iii. dash-pot
 - iv. all of the above
- 5. Force balancing equation of a mass elements is (where x = displacement)
 - i. M d2x/dt2
 - ii. M dx/dt
 - iii. M *x
 - iv. any of the above
- 6. Which of the following is the analogous quantity for mass element in force-voltage analogy?
 - i. resistance
 - ii. inductance
 - capacitance iii.
 - iv. all of the above

UNIT II

- Transient state analysis deals with -----
 - magnitude of error i.
 - ii. nature of response
 - both 1 and 2 iii.
 - none of the above iv.
- 2. When compared a 1st order LPF with a 2nd order LPF has
 - i. lower voltage gain.
 - ii. higher voltage gain.
- The impulse response of the system described by the differential equation dy dy dy dy dy

$$\frac{dy}{dx} + 6y = x(t)$$

will be

- $e^{-3t}u(t)$. i.
- ii.
- iii. none of above.

Name of faculty: Tina Bhati Subject with Code: 5EC3-04 1

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

4.	A second c(t) = i. ii. iii. iiv.	ond order control system is defined by the following equation: $4 d^2c(t)/dt^2 + 8 dc(t)/dt + 10 dc(t)$ The damping ratio and natural frequency for this system are respectively 0.25 and 2 rad/s 0.25 and 4 rad/s 0.50 and 2 rad/s 0.50 and 4 rad/s	16
5.	The st i. ii. iii. iv.	teady state error due to ramp input for a type two system is equal to zero infinite non zero number constant	
	the rig i. ii. iii. iv.	haracteristic equation of a feedback control is $2s^4 + s^3 + 3s^2 + 5s + 10 = 0$. The no of roots that half of the s-plane is 2. 3. 4. 0.	in
7.	The ar i. ii. iii. iv.	angle condition is used for checking whether any point lies on root locus or not is	
8.	The m i. ii. iii. iv.	agnitude condition for root locus is	
9.	A unit	by feedback control system has an open loop transfer function $G(s) = k/(s(s^2 + 7s + 12))$ The for which $s = -1 + j1$ will lie on the root locus of the system is 4 6.5 5	ne
10.	iv. Which i. ii. iii. iv.	10 a of the following statements is/are true? Centroid may be a part of root locus Centroid may not be a part of root locus both 1 and 2 nether 1 nor 2	
	iii. iv.	UNIT III of the poles of a linear control system lie in the right half of s plane. For a bounded input put of this system always bounded. could be unbounded. tends to zero. none of these.	t,
2.	i. ii. iii. iii. iv.	stable unstable marginally stable critical stable	6

		(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.)) DABOK, UDAIPUR, RAJASTHAN 313022
3.	Find	the corner frequency for the following transfer function? $G(s) = 1/(s+2)$
	i.	2 rad/s
	ii.	1/2 rad/s
	iii.	4 rad/s
1	iv.	1/4 rad/s
4.	fragu	h plots in frequency domain represent the two separate plots of magnitude and phase against
	i.	ency in logarithmic value?
	ii.	Polar plots Bode plots
	iii.	Nyquist plots
	iv.	All of the above
5.		is the sinusoidal transfer function obtained from the system transfer function in frequency
	doma	in?
	i.	Replacement of 'jω' by 's'
	ii.	Replacement of 's' by 'ω'
	iii.	Replacement of 's' by 'jω'
	iv.	Replacement of 'ω' by 's'
6.	Accor	rding to the principle of log-scales, if the ratio between two points is same, then the two
		getequally.
	i.	United
	ii.	Separated
	iii.	Multiplexed
7	iv.	Mixed
1.	i.	ble is located at origin, how does it get represented on the magnitude plot?
	ii.	$-10 \log (\omega) dB$ $-20 \log (\omega) dB$
	iii.	-20 log (ω) dB -40 log (ω) dB
	iv.	-60 log (ω) dB
8.		compensator is used to improve
3.000	i.	transient response
	ii.	steady state response
	iii.	both 1 and 2
	iv.	none of the above
9.	Addin	g a pole to a system transfer function in terms of compensator represents a
		ensator?
	i.	Lead
	ii.	Lag
	iii.	Lead-Lag
	iv.	Lag-lead
10	TCI .	ansfer function of two compensator are given below $C_1 = \frac{10(s+1)}{s+10}$ and $C_2 = \frac{s+10}{10(s+1)}$ which one
10.		ansfer function of two compensator are given below $\frac{s+10}{s+10}$ which one
	is corr	2 P 0
	i.	C_1 is a lag compensator and C_2 is a lead compensator.
	ii. iii.	C ₁ is a lead compensator and C ₂ is a lag compensator.
	iv.	Both C ₁ and C ₂ are lead compensator. Both C ₁ and C ₂ are lag compensator.
	1 V .	DIRECTOR Tachnical Stine
		Both C ₁ and C ₂ are lag compensator. UNIT IV Geetanjall Institute of Technical Studies Geetanjall Institute of Technical Studies See function of a control system does not have note zero probabilistics. Which one of the
1.	A tran	sfer function of a control system does not have pole-zero cancellation. Which one of the

system is completely controllable and observable Name of faculty: Tina Bhati Subject with Code: 5EC3-04

i. ii.

following statement is true?

system is neither controllable nor observable

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))
DABOK, UDAIPUR, RAJASTHAN 313022

system is observable but uncontrollable

iii.

Subject with Code: 5EC3-04

	iv.	system is controllable but unobservable	
2		ransfer function approach is applicable to:	
~	i.	only linear time-invariant systems	
	ii.	linear time-invariant as well as time variant	
	iii.	linear time-invariant as well as time-varying systems linear as well as nonlinear systems	
	iv.	all systems	
3.		number of state variables of a system is equal to:	
٥.	i.	the number of integrators present in the	
	ii.	the number of differentiators present in the system	
	iii.	the number of differentiators present in the system	
	iv.	the sum of the number of integrators and differentiators present in the system none of these	
4.		Ax(t) + Bu(t) is called the :	
٠.	i.	system equation	
	ii.	state equation	
	iii.	state transition equation	
	iv.	none of these	
5.		umber of canonical forms is :	
٥.	i.	2	
	ii.	3	
	iii.	4	
	iv.	5	
6		decomposition is applicable to transfer functions in which:	
0.	i.	denominator is in factored form	
	ii.	both numerator and denominator are in factored form	
	iii.	both numerator and denominator are in factored form	
	iv.	both numerator and denominator are not in factored form all the above	
7			
/.	i.	decomposition is applicable to transfer functions in which: denominator is in factored form	
	ii.	both numerator and denominator are in factored form	
	iii.	both numerator and denominator are not in factored form	
	iv.	all the above	
8.		gen values of the state model are the same as the :	
0.	i.	open-loop poles	
	ii.	closed-loop poles	
	iii.	both the open-loop and closed-loop poles	
	iv.	none of these	
9.		pace analysis is applicable even if the initial conditions are	
•	i.	Zero	
	ii.	Non-zero A	
	iii.	Equal	
	iv.	Not equal	
10		among the following are the interconnected units of state diagram representation?	
	i.	Scalars	
	ii.	Scalars Adders DIRECTOR Technical Studies	
		Adders Integrators All of the above DIRECTOR DIRECTOR Geetanjali Institute of Technical Studies All VDAIPUR-313022 (Raj.)	
	iv.	All of the above Geetanjali ilianapur-313022 (1897)	
11.	Which	among the following plays a crucial role in determining the state of dynamic system?	
	i.	Integrators All of the above among the following plays a crucial role in determining the state of dynamic system? State variables	
	ii.	State vector	
	iii.	State space	
	iv.	State scalar	
me of	faculty	Tina Bhati	

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

UNIT V

- 1. The main step for solving the optimal control problem:
 - Transfer function of system which is optimal with respect to the given performance criterion
 - ii. Compensators for the system
 - iii. Minimizing the quadratic function
 - iv. All of the mentioned
- 2. For the stability in optimal control poles of the transfer function must be:
 - i. Located on the right half of s plane
 - ii. Left half of s plane
 - iii. On the s plane
 - iv. None of the mentioned
- 3. The special case of the tracking problem with input equal to zero:
 - i. Free response
 - ii. Regulator problem
 - iii. Forced response
 - iv. Output regulator problem
- 4. The method of choosing compensator is the configuration must be:
 - i. Forward path
 - ii. Cascade and feedback compensation
 - iii. Feed forward configuration
 - iv. All of the mentioned
- 5. The primary objective of the output regulator problem is to damp out:
 - i. Initial conditions quickly
 - ii. Reducing the effect of excessive oscillations
 - iii. Reducing the effect of excessive overshoot
 - iv. All of the mentioned
- 6. Asymptotic stability is concerned with...
 - i. A system not under the influence of
 - ii. A system under influence of input
 - iii. A system under influence of the output
 - iv. A system not under influence of input
- 7. The term backlash is...
 - i. Gear trains
 - ii. Tacho generator
 - iii. Servomotors
 - iv. Induction relays
- 8. Practically all the elements are:
 - i. Linear
 - ii. Non-linear
 - iii. Exponential
 - iv. None of the mentioned

Geetanjali Institute of Technical Studies
Dabok UDAIPUR-313022 (Raj.)

Mid Term Exam – I

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR

Ist Internal Examination 2018-19 B.Tech III Year, V Semester Sub: Control System (Code: 5EC4-03)

Time: 1.30 Hr Max Marks: 24

	1.30 Hr	Max Ma	irks: 24
Q. No.	Question	Marks	CO
Q.1	PART-A (Compulsory)		00-11
(a)	What is meant by a system?	1	CO246.1
(b)	What is meant by steady state error?	1	CO246.2
(c)	What are the three basic elements in electrical and mechanical system?	1	CO246.1
(d)	List out the advantages of open and closed loop control system.	2	CO246.1
	PART-B (Attempt only 3 out of 4)		CO240.1
Q.2	The open loop transfer function of a unity feedback control system is given by	3	CO246.1
	c() k		
	$G(s) = \frac{k}{s(1+sT)}$		
Q.3	By what factor the amplifier gain k should be multiplied so that the damping ratio is increased from 0.3 to 0.9. A unity feedback system has an open loop transfer function,		000161
Q.3	A unity feedback system has an open foop transfer function,	3	CO246.1
	K(s+13)		
	$G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$		
	Using Routh's stability criterion, find the range of K for the system to be stable		
Q.4	Find the position, velocity and acceleration error constants, for the following unity feedback system, whose open loop	3	CO246.2
	transfer function is given by:		
	$C(s) = \frac{50}{s}$		
	$G(s) = \frac{50}{(1+0.1s)(1+2s)}$		
Q.5	Obtain the unit step response of a unity feedback system whose open loop transfer function is	3	CO246.2
Q.S	Δ	3	00240.2
	$G(s) = \frac{4}{s(s+5)}$		
	S(S+5)		7
0.6	PART-C (Attempt only 2 out of 3)		
Q.6	Explain the derivation of analogous network using force voltage analogy.	5	CO246.1
Q.7	The open loop transfer function of a unity feedback system is given by	5	CO246.2
	40		
	$G(s) = \frac{40}{[\emptyset(2\emptyset+1)]}$		
Q.8	Determine steady state error using error-series for input r(t)= (3+4t)t For the system represented by block diagram shown below, obtain the transfer function by using block diagram reduction	5	CO246.3
2.0	technique. Verify the result using signal flow graphs.	3	CO240.3
	6		
	G ₄		
		_	
	$R \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow G_3 \rightarrow G_3 \rightarrow G_4 \rightarrow G_5 \rightarrow G_5 \rightarrow G_7 \rightarrow $	C	
	-↑ ↑-		i
	H ₃		
	113		7
	H ₂	•	
	H ₁	_	

DIRECTOR

Geetanjali Institute of Technical Studies

(Raj.)

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

Marks and Identification of Slow Learner of Mid-Term I

*(Y = Slow Learner, if obtained marks are <50%)

S.No.	UNIVERSITY ROLL NO.	Name of Student	Mid-Term 1 MM-24	Remark (Remedial Class need or not – Y/N)
1	17EGIEC001	Aayesha Bi	AB	Y
2	17EGIEC002	Ajay Devra	18	N
3	17EGIEC003	Akansha Suthar	23	N
4	17EGIEC005	Anchal Agarwal	13	N
5	17EGIEC006	Anisha Kumari Jain	24	N
6	17EGIEC007	Anshuman Singh Chouhan	12	N
7	17EGIEC008	Arpit Jain	AB	Υ
8	17EGIEC009	Azhar Nawajpinjara	15	N
9	17EGIEC012	Deepesh Meena	20	N
10	17EGIEC013	Deepika Choudhari	18	N
11	17EGIEC014	Dhruv Sharma	AB	Y
12	17EGIEC015	Divyaraj Singh Dahiya	21	N
13	17EGIEC016	Diya Pushkarna	18	N
14	17EGIEC017	Faiz Alam	16	N
15	17EGIEC018	Gunjan Joshi	12	N
16	17EGIEC019	Harshita Banshal	24	N
17	17EGIEC020	Himanshi Jain	18	N
18	17EGIEC021	Iffat Mazhar	19	N
19	17EGIEC022	Kapil Joshi	AB	Y
20	17EGIEC023	Khushi Bhatnagar	AB	Y
21	17EGIEC024	Manish Sain	AB	Y
22	17EGIEC025	Manoj Dadheech	18	N
23	17EGIEC026	Manthan Chaturvedi	AB	Y
24	17EGIEC027	Mitali Dawar	20	N
25	17EGIEC029	Mohammed Ujjer Tak	19	N
26	17EGIEC032	Parth Jain	AB	Y
27	17EGIEC033	Piyush Ramawat	AB	Y
28	17EGIEC034	Pratyusha Rathore	20	N
29	17EGIEC035	Rajnish Vaishnav Vairagi	AB	N
30	17EGIEC036	Riya Tyagi	18	
31	17EGIEC040	Shoaib Akhtar	AB	N Y
32	17EGIEC041	Soniya Mali	AB	Y
33	17EGIEC044	Vaibhay Harit	17	
34	17EGIEC045	Vaibhav Sharma	19	N
35	17EGIEC300	Riddhi Jain	23	N
36	18EGIEC200	Arpit Joshi	14	N N

Foral

Signature of Faculty:

Name of faculty: Tina Bhati Subject with Code: 5EC3-04 DIRECTOR

DIRECTOR

Technical Studies

(Ral.)

Debok, UDAIPUR-313022 (Ral.)

Signature of HOD

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

Remedial Action Taken for Slow Learner (After Mid-Term I)

S.no.	University Roll no.	Name of Student	Topics to be discussed in Remedial Class	Schedule Date of Remedial Class	Outcome
1	17EGIEC001	Aayesha Bi	root locus, signal flow graph, time response analysis	04/09/19	CO353.1 & CO353.2
2	17EGIEC008	Arpit Jain	root locus, signal flow graph, time response analysis	04/09/19	CO353.1 & CO353.2
3	17EGIEC014	Dhruv Sharma	root locus, signal flow graph, time response analysis	AB	CO353.1 & CO353.2
4	17EGIEC022	Kapil Joshi	root locus, signal flow graph, time response analysis	04/09/19	CO353.1 & CO353.2
5	17EGIEC023	Khushi Bhatnagar	root locus, signal flow graph, time response analysis	16/09/19	CO353.1 & CO353.2
6	17EGIEC024	Manish Sain	root locus, signal flow graph, time response analysis	04/09/19	CO353.1 & CO353.2
7	17EGIEC026	Manthan Chaturvedi	root locus, signal flow graph, time response analysis	AB	CO353.1 & CO353.2
8	17EGIEC032	Parth Jain	root locus, signal flow graph, time response analysis	AB	CO353.1 & CO353.2
9	17EGIEC035	Rajnish Vaishnav Vairagi	root locus, signal flow graph, time response analysis	04/09/19	CO353.1 & CO353.2
10	17EGIEC040	Shoaib Akhtar	root locus, signal flow graph, time response analysis	04/09/19	CO353.1 & CO353.2
11	17EGIEC041	Soniya Mali	root locus, signal flow graph, time response analysis	16/09/19	CO353.1 & \CO353.2

boar

Signature of Faculty:

Name of faculty: Tina Bhati Subject with Code: 5EC3-04 Gertanial Institute of Technical Studies
Dabok, UDAIPUR-313022 (Fail)
Signature of HOD

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

Mid Term Exam – II

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR

II Internal Examination 2019-20 B.Tech III Year, V Semester

Sub: Control System (Code: 5EC4-03)

Time: 1.30 Hr

Max

1arks: 24			
Q. No.	Question	Marks	CO
	PART-A (Compulsory)		
Q.1	Define:	1	CO354.
(a)	Gain Cross over Frequency State and State Variable		00251
(b)	State and State Variable	1	CO354.
(c)	Peak Overshoot	1	CO354.
(d)	Gain Margin and Phase Margin	2	CO354.
	PART-B (Attempt only 3 out of 4)		
Q.2	Discuss the merits and demerits of frequency response analysis.	3	CO354.
			,
Q.3	Construct the state model for a system characterized by the differential equation $\frac{d^2y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y = u$ Give the block diagram representation of the state model.	3	CO354.
Q.4	Obtain STM for the state model whose A matrix is given by	3	CO354
	$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$		
_	1-2 -31		
Q.5	Determine the value of K and P of the closed loop system shown below so that maximum over shoot in unit step	3	CO354
	response is 25% and peak time is 2 seconds. Assume J = 1Kgm ² . R(s) +		1
	PART-C (Attempt only 2 out of 3)		
Q.6	Plot the root locus for a system whose forward path transfer function is $G(s) H(s) = \frac{K(s+1)}{s(s+2)(s^2+2s+5)}$	5	CO354.
Q.7		5	CO354.
	The open loop transfer function of a unity feedback system is $G(s) = \frac{50K}{(s+10)(s+5)(s+1)}$ a. Gain margin and phase margin The value of steady-state error co-efficient for a gain of 10 dB and the value which will make the closed-loop system marginally stable.		
Q.8	marginally stable. State Nyquist criterion of stability. Construct the complete Nyquist plot for a unity feedback control system whose open loop transfer function is $G(s)H(s) = \frac{K}{s(s^2 + 2s + 2)}$	5	CO354.

Ceetanjali Institute of Technical Studies
Dabok, UDAIPUR-313022 (Raj.)

Name of faculty: Tina Bhati Subject with Code: 5EC3-04

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

Marks and Identification of Slow Learner of Mid-Term II

S.No.	UNIVERSITY ROLL NO.	MM-24 C		Remark (Remedial Class need or not – Y/N)
1	17EGIEC001	Aayesha Bi	18	N
2	17EGIEC002	Ajay Devra	15	N
3	17EGIEC003	Akansha Suthar	24	N
4	17EGIEC005	Anchal Agarwal	18	N
5	17EGIEC006	Anisha Kumari Jain	24	N
6	17EGIEC007	Anshuman Singh Chouhan	19	N
7	17EGIEC008	Arpit Jain	19	N
8	17EGIEC009	Azhar Nawajpinjara	20	N
9	17EGIEC012	Deepesh Meena	17	N
10	17EGIEC013	Deepika Choudhari	19	N
11	17EGIEC014	Dhruv Sharma	12	N
12	17EGIEC015	Divyaraj Singh Dahiya	23	N
13	17EGIEC016	Diya Pushkarna	21	Ni
14	17EGIEC017	Faiz Alam	17	N
15	17EGIEC018	Gunjan Joshi	19	N
16	17EGIEC019	Harshita Banshal	24	N
17	17EGIEC020	Himanshi Jain	24	N
18	17EGIEC021	Iffat Mazhar	20	N
19	17EGIEC022	Kapil Joshi	15	N
20	17EGIEC023	Khushi Bhatnagar	19	N
21	17EGIEC024	Manish Sain	16	N
22	17EGIEC025	Manoj Dadheech	18	N
23	17EGIEC026	Manthan Chaturvedi	13	N
24	17EGIEC027	Mitali Dawar	22	N
25	17EGIEC029	Mohammed Ujjer Tak	17	N
26	17EGIEC032	Parth Jain	17	N
27	17EGIEC033	Piyush Ramawat	AB	Ν ,
28	17EGIEC034	Pratyusha Rathore	19	N
29	17EGIEC035	Rajnish Vaishnav Vairagi	15	N
30	17EGIEC036	Riya Tyagi	18	N
31	17EGIEC040	Shoaib Akhtar	15	N
32	17EGIEC041	Soniya Mali	15	N
33	17EGIEC044	Vaibhav Harit	17	N
34	17EGIEC045	Vaibhav Sharma	23	N
35	17EGIEC300	Riddhi Jain	23	N
36	18EGIEC200	Arpit Joshi	15	N

*(Y, if obtained marks are <50%)

Signature of Faculty:

Name of faculty: Tina Bhati Subject with Code: 5EC3-04 DIRECTOR

Geetkanjali Institute of Technical Studies

Dabok, UDAIPUR-313022 (Raj.)

Signature of HOD

1

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

Remedial Action Taken to for Slow Learner (After Mid-Term II)

S.No.	University Roll no.	Name of Student	Topics to be discussed in Remedial Class	Schedule Date of Remedial Class	Outcome
NIL	NIL	NIL	NIL	NIL	NIL

DIRECTOR

DIRECTOR

Director Technical Studies

Geetanjali Institute of Technical Studies

Dabok, UDAIPUR-313022 (Raj.)

Signature of HOD

Signature of Faculty:

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

Model Question Paper with Key Solution

	GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR Model paper 2019-20	_
	Sub: Control System (Code: 5EC4-03)	
		arks: 120
Q. No.	Question	Marks
	PART-A (Compulsory)	_
(a)	Define:	2
	Gain Cross over Frequency	
	The gain crossover frequency, Ω_{gc} , is the frequency where the amplitude ratio is 1, or when log	g modulus is equ
1000	to 0.	
(b)	State and State Variable	2
	 State: The state of a dynamic system is the smallest set of variables and the knowledge 	
	at $t = t_0$ together with inputs for $t \ge t_0$ completely determines the behaviour of the s	
	compact and concise representation of the past history of the system can be termed	as the state of t
	system.	
	State Variables: The smallest sets of variables that determine the state of the system and the system and the state of the system and the system as the system and the sys	are known as sta
	variables.	
(c)	Peak Overshoot	2
	Maximum overshoot (M _p) is straight way difference between the magnitude of the highest pea	
	and magnitude of its steady state. Maximum overshoot is expressed in term of percentage of ste	
	the response. As the first peak of response is normally maximum in magnitude, maximum or	vershoot is simp
	normalized difference between first peak and steady-state value of a response.	
	Maximum % Overshoot $-\frac{c(t_p) - c(\infty)}{c(\infty)} \times 100\%$	
(d)	Gain Margin and Phase Margin	2
	The gain margin refers to the amount of gain, which can be increased or decreased w	vithout making t
	system unstable. It is usually expressed as a magnitude in dB.	8
	The phase margin refers to the amount of phase, which can be increased or decreased.	ed without maki
	the system unstable. It is usually expressed as a phase in degrees.	d williout main
(e)	Calculate the angle of asymptotes for unity feedback system whose	1 2
(e)	cureurate are ungre or asymptotes for unity recudent system whose	1 2
	K	2
	$G(s) = \frac{K}{s(s^2 + 4s + 8)}$	2
	$G(s) = \frac{K}{s(s^2 + 4s + 8)}$	
	$G(s) = \frac{K}{s(s^2 + 4s + 8)}$ Angle of asymptotes $\theta = \frac{(2q + 1)180^{\circ}}{2}$ where $q = 0,1,2,3,,P - Z - 1$	
	$G(s) = \frac{K}{s(s^2 + 4s + 8)}$ Angle of asymptotes $\theta = \frac{(2q + 1)180^{\circ}}{P - Z}$ where $q = 0,1,2,3,P - Z - 1$	
	No. of asymptotes=P-Z=3	
	No. of asymptotes=P-Z=3	
	No. of asymptotes=P-Z=3	
(f)		
(f)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0 + 1)180^{\circ}}{2} = 60^{\circ}, \theta_2 = \frac{(2.1 + 1)180^{\circ}}{2} = 180^{\circ}, \theta_3 = \frac{(2.2 + 1)180^{\circ}}{2} = 300^{\circ}$	
	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1+1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2+1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement.	
(f) (g)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0 + 1)180^{\circ}}{2} = 60^{\circ}, \theta_2 = \frac{(2.1 + 1)180^{\circ}}{2} = 180^{\circ}, \theta_3 = \frac{(2.2 + 1)180^{\circ}}{2} = 300^{\circ}$ What is LVDT?	2
	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1+1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2+1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error?	2
(g)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^{\circ}}{2} = 60^{\circ}, \theta_2 = \frac{(2.1+1)180^{\circ}}{2} = 180^{\circ}, \theta_3 = \frac{(2.2+1)180^{\circ}}{2} = 300^{\circ}$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output of the state of	2
	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1+1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2+1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state).	2 of a system in t
(g) (h)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1+1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2+1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability?	2 of a system in t
(g)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1+1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2+1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system . Relative stability is related to sett	2 of a system in t ling time.
(g) (h)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1+1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2+1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output elimit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system . Relative stability is related to sett What is optimal control?	2 of a system in t ling time.
(g) (h)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^{\circ}}{2} = 60^{\circ}, \theta_2 = \frac{(2.1+1)180^{\circ}}{2} = 180^{\circ}, \theta_3 = \frac{(2.2+1)180^{\circ}}{2} = 300^{\circ}$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system. Relative stability is related to sett What is optimal control? Optimal control is the process of determining control and state trajectories for a dynamic system time to minimise a performance index. PART-B (Attempt only 5 out of 7)	2 of a system in t 2 ling time. 2 m over a period
(g) (h)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1+1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2+1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system . Relative stability is related to sett What is optimal control? Optimal control is the process of determining control and state trajectories for a dynamic system time to minimise a performance index.	2 of a system in t ling time.
(g) (h)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0+1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1+1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2+1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system. Relative stability is related to sett What is optimal control? Optimal control is the process of determining control and state trajectories for a dynamic system time to minimise a performance index. PART-B (Attempt only 5 out of 7) Discuss the merits and demerits of frequency response analysis. Merits:	2 of a system in t 2 ling time. 2 m over a period
(g) (h)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0 + 1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1 + 1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2 + 1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system. Relative stability is related to sett What is optimal control? Optimal control is the process of determining control and state trajectories for a dynamic system time to minimise a performance index. PART-B (Attempt only 5 out of 7) Discuss the merits and demerits of frequency response analysis. Merits: 1. Transfer functions which are complicated to determine the behaviour of the expension.	2 of a system in t 2 ling time. 2 m over a period 8 rimentally can
(g) (h)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0 + 1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1 + 1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2 + 1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system. Relative stability is related to sett What is optimal control? Optimal control is the process of determining control and state trajectories for a dynamic system time to minimise a performance index. PART-B (Attempt only 5 out of 7) Discuss the merits and demerits of frequency response analysis. Merits: 1. Transfer functions which are complicated to determine the behaviour of the expension.	2 of a system in t 2 ling time. 2 m over a period 8 rimentally can
(g) (h)	No. of asymptotes=P-Z=3 $\theta_1 = \frac{(2.0 + 1)180^\circ}{2} = 60^\circ, \theta_2 = \frac{(2.1 + 1)180^\circ}{2} = 180^\circ, \theta_3 = \frac{(2.2 + 1)180^\circ}{2} = 300^\circ$ What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system. Relative stability is related to sett What is optimal control? Optimal control is the process of determining control and state trajectories for a dynamic system time to minimise a performance index. PART-B (Attempt only 5 out of 7) Discuss the merits and demerits of frequency response analysis. Merits: 1. Transfer functions which are complicated to determine the behaviour of the expension.	2 of a system in t 2 ling time. 2 m over a period 8 rimentally can
(g) (h)	No. of asymptotes=P-Z=3 θ ₁ = \frac{(2.0 + 1)180°}{2} = 60°, θ ₂ = \frac{(2.1 + 1)180°}{2} = 180°, θ ₃ = \frac{(2.2 + 1)180°}{2} = 300° What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system . Relative stability is related to sett What is optimal control? Optimal control is the process of determining control and state trajectories for a dynamic system to minimise a performance index. PART-B (Attempt only 5 out of 7) Discuss the merits and demerits of frequency response analysis. Merits: 1. Transfer functions which are complicated to determine the behaviour of the expendent using the frequency response analysis 2. Design of the system and adjusting the parameters of the system can be easily carried of the system and parameter of corrective measurement for noise disturbance generated in the system and parameter	2 of a system in to 2 ling time. 2 m over a period 8 rimentally can out.
(g) (h)	No. of asymptotes=P-Z=3 θ ₁ = \frac{(2.0 + 1)180°}{2} = 60°, θ ₂ = \frac{(2.1 + 1)180°}{2} = 180°, θ ₃ = \frac{(2.2 + 1)180°}{2} = 300° What is LVDT? LVDT is a passive transducer that is used for linear displacement measurement. What is steady state error? Steady-state error is defined as the difference between the input (command) and the output limit as time goes to infinity (i.e. when the response has reached steady state). What is relative stability? it is measure of how fast the transient dies out in the system . Relative stability is related to sett What is optimal control? Optimal control is the process of determining control and state trajectories for a dynamic system to minimise a performance index. PART-B (Attempt only 5 out of 7) Discuss the merits and demerits of frequency response analysis. Merits: 1. Transfer functions which are complicated to determine the behaviour of the expendence using the frequency response analysis 2. Design of the system and adjusting the parameters of the system can be easily carried of the system can b	2 of a system in to 2 ling time. 2 m over a period 8 rimentally can out. s variation can

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

NBA CODE: CO353

Subject with Code: 5EC3-04

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

	$F_1 = G_1 G_2 G_3 G_4 G_5,$	
	$\Delta_1 = 1$	
	$F_2 = G_1 G_4 G_5 G_6$	
	$\Delta_2 = 1$	
	$F_2 = G_1 G_2 G_7$	
	$\Delta_3 = 1 + G_4 H_2$ Step 3: Individual Loops	
	$L_1 = -G_4 H_2$	
	$L_2 = -G_3 G_4 G_5 H_1$	
	$L_2 = -G_7 H_1$	İ
	Step 4: Possible combinations of 2 non-touching loops	1
	$L_1 L_2 = G_3 G_7 H_2 H_1$	
	No possible combination of 3 non touching loops	
	Step 5:	
	$\Delta = 1 + G_4 H_2 + G_3 G_4 G_5 H_1 + G_7 H_1 + G_3 G_7 H_2 H_1$	
	$T.F = \frac{G_1 G_2 G_3 G_4 G_5 + G_1 G_4 G_5 G_6 + G_1 G_2 G_7 + G_1 G_2 G_7 G_4 H_2}{1 + G_4 H_2 + G_3 G_4 G_5 H_1 + G_7 H_1 + G_3 G_7 H_2 H_1} Ans$	
Q.6	Test for the controllability and observability for the following system: $x(t) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u$	8
	$x(t) = \begin{bmatrix} 0 & -2 & 0 \\ 0 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$	
	$y = \begin{bmatrix} 1 & 0 & 0 & -3 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & -3 \end{bmatrix}$	
Sol.	See This, the annuality and the county for	
501.		
	And I was a series of the contraction of the contra	
		İ
	De[o] Green was a substitute [t = 1]	1
	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	
	0 0 0 1 0 0 0 1 0 0 0 0 0 0 0	
	# 10 10 10 10 10 10 10 10 10 10 10 10 10	
	Catalogue and a particular of	
Q.7	The open loop transfer function of a unity feedback system is given by	8
	$G(s) = \frac{40}{s(2s+1)}$	
	3(23 1. 2)	
Sol.	Determine steady state error using error-series for input $r(t) = (3+4t)t$.	
501.	$G(s) = \frac{40}{s(2s+1)}, H(s) = 1 \text{ and } r(t) = 3t + 4t^2 \text{ Given}$	
	now for dynamic coefficient method,	
	$e_{ss}(t) = K_0 r(t) + K_1 r'(t) + K_2 r''(t) + \dots$	
	$K_n = \lim_{s \to 0} \frac{d^n F_1(s)}{d s^n}$	
	$\Lambda_n = \lim_{s \to 0} \frac{1}{ds^n}$	1
	where	Λ.
	$F_1(s) = \frac{1}{1 + G(s)Hs}$	
	$F_1(s) = \frac{s^2 + s}{2s^2 + s + 40}$	
	$2s^2 + s + 40$	
	$K_0 = \lim \frac{s^2 + s}{s} = 0$	
	s→0 2s² + s + 40	
	$F_{1}(s) = \frac{s^{2} + s}{2s^{2} + s + 40}$ $K_{0} = \lim_{s \to 0} \frac{s^{2} + s}{2s^{2} + s + 40} = 0$ $K_{1} = \lim_{s \to 0} \frac{dF_{1}(s)}{ds} = \lim_{s \to 0} \frac{s^{2} + s}{2s^{2} + s + 40} = \lim_{s \to 0} \frac{160s + 40}{(2s^{2} + s + 40)^{2}} = 0$ $K_{1} = \lim_{s \to 0} \frac{dF_{1}(s)}{ds} = \lim_{s \to 0} \frac{s^{2} + s}{2s^{2} + s + 40} = \lim_{s \to 0} \frac{160s + 40}{(2s^{2} + s + 40)^{2}} = 0$	
	$s \to 0$ ds $s \to 0$ 2s ² + s + 40 $s \to 0$ (2s ² + s + 40) ²	

GEETANJALI INSTITUTE OF TECHNIC

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

Step 3:

Angle of asymptotes
$$\theta = \frac{(2q+1)180^{\circ}}{P-Z}$$
 where $q = 0,1,2,3,...,P-Z-1$

No. of asymptotes=P-Z=3
$$\theta_1 = \frac{(2.0 + 1)180^{\circ}}{2} = 60^{\circ}, \theta_2 = \frac{(2.1 + 1)180^{\circ}}{2} = 180^{\circ}, \theta_3 = \frac{(2.2 + 1)180^{\circ}}{2} = 300^{\circ}$$

Step 4: The co-ordinates of centroid σ

 $\sigma = \frac{\sum Real \ part \ of \ poles \ of \ G(s)H(s) - \sum Real \ part \ of \ zeros \ of \ G(s)H(s)}{P - Z}$ $\sigma = \frac{(0) + (-2) + (-1) - (-1) - (-1)}{3}$

$$\sigma = \frac{(0) + (-2) + (-1) - (-1) - (-1)}{3}$$

 $\sigma = -1$

Step 5: As per general prediction there is no breakaway point.

Step 6: Intersection of root locus with imaginary axis

The characteristic equation
$$1 + G(s)H(s) = 0$$

$$s^{4} + 4s^{3} + 9s^{2} + (10 + K)s + K = 0$$

> Routh array in terms of K

Geotenjali Institute of Technical Studies Detok, UDAIPUR-313022 (Raj.)

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

$$\frac{26 - K}{4}$$
 K

 $\frac{(26 - K)(10 + K)}{4} - 4K$
 $\frac{K}{4}$

from row
$$s^1$$

$$\frac{(26-K)(10+K)}{4} - 4K = 0$$

$$K_{mar} = \pm 16.12$$

$$A(s) = \frac{26 - K}{4} s^2 + K_{mar} = 0$$

$$A(s) = \frac{26 - K}{4}s^2 + 16.12$$

$$s = \pm j2.55$$

Step 7: Angle of departure from complex poles. Consider pole -1+j2. Join all poles and zero to it.

$$\begin{split} \varphi_{d} &= 180^{\circ} - \varphi, \quad \varphi_{d} = 180^{\circ} - (\sum \varphi_{P} - \sum \varphi_{Z}) \\ \sum \varphi_{P} &= \varphi_{P1} + \varphi_{P2} + \varphi_{P3}, \qquad \sum \varphi_{Z} = \varphi_{Z1} \\ \varphi_{P1} &= 180^{\circ} - tan^{-1}\frac{2}{1} = 116.565^{\circ}, \quad \varphi_{P2} = tan^{-1}\frac{2}{1} = 63.43^{\circ}, \quad \varphi_{P3} = 90^{\circ} \quad and \quad \varphi_{Z1} = 90^{\circ} \\ \sum \varphi_{P} &= 90^{\circ} + 116.565^{\circ} + 63.43^{\circ} = 270^{\circ}, \quad \sum \varphi_{Z} = 90^{\circ} \\ \varphi_{d} &= 0^{\circ} at - 1 + j2 \\ \varphi_{d} &= 0^{\circ} at - 1 - j2, \quad \text{As root locus is symmetrical about real axis} \end{split}$$

DIRECTOR

Geetanjali Institute of Technical Studies
Dafok, UDAIPUR-313022 (Raj.)

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

$$\omega_n = \sqrt{\frac{K}{T}} \quad rad/\sec \quad , \xi = \frac{1}{2\sqrt{TK}} \quad \dots \dots A$$

Now T is constant, gain K is to be changed.

Let
$$K = K_1$$
 for $\xi_1 = 0.3$

$$\xi_1 = \frac{1}{2\sqrt{TK_1}} \quad \dots B$$

Let
$$K = K_2$$
 for $\xi_2 = 0.9$

$$\xi_2 = \frac{1}{2\sqrt{TK_2}} \quad \dots \quad C$$

taking ratio of eqation B and C, we get

$$\frac{\xi_1}{\xi_2} = \sqrt{\frac{K_2}{K_1}}$$

$$\frac{K_2}{K_1} = \frac{1}{9}$$

Gain K_1 must be multipled by $\frac{1}{9}$ to change damping ratio from 0.3 to 0.9

Q.5 Find the transfer function for the system shown in diagram.

Sol. Step 1: No. of Forward Path N=2

$$T.F = \frac{F_1 \triangle_1 + F_2 \triangle_2}{\triangle}$$

Step 2:

$$F_1 = 50$$

$$\Delta_1 = 1.5$$

$$F_2 = 20$$

$$\Delta_2 = 11$$

Step 3: Individual Loops

$$L_1 = -0.5$$

$$L_2 = -10$$

$$L_3 = -2$$

$$L_4 = -50$$

$$L_5 = -20$$

Step 4: Possible combinations of 2 non-touching loops

$$L_1 L_2 = 5$$

$$L_2L_5 = 200$$

Gaetanja institut of Technical Studies Dabox, UE-1 UR-313022 (Raj.)

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

$$L_{1}L_{3} = 1$$

$$L_{1}L_{4} = 25$$
No possible combination of 3 non touching loops
Step 5:
$$\Delta = 1 - (L_{1} + L_{2} + L_{3+}L_{4} + L_{5}) + (L_{1}L_{2} + L_{2}L_{5} + L_{1}L_{3} + L_{1}L_{4})$$

$$\Delta = 314.5$$

$$T. F = \frac{50 \times 1.5 + 20 \times 11}{314.5} = 0.9388 \ Ans$$

DIRECTOR

Geotenjali Institute of Technical Studies

Dabok, UDAIPUR-313022 (Ref.)

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.)) DABOK, UDAIPUR, RAJASTHAN 313022

UNIVERSITY QUESTION PAPER (LAST ONE YEAR)

Roll No. 1. riuenline.com 6E6055 B. Tech. (Sem. VI) (Main / Back) Examination, April-May 2018 Electronics & Communication Engg. 6EC5A Control Systems

Time: 3 Hours

rtuonline com

Maximum Marks: 80 Min. Passing Marks: 24

Attempt any five questions, selecting one question from each unit. All Questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly Units of quantities used / calculated must be stated clearly.

Use of following supporting material is permitted during exceptation (Mentioned in form No. 205)

UNIT - I

2. NIL

Find the following for the given system (a) force-voltage analogy and (b) force current analogy.

rtuanline.com

6E 6055 1

R.T.O.

Consider a de shunt wounded generator shown below rotating at constant speed and single voltage applied to its field. If the generator is open circuited, find transfer function $V_0(x)/V_T(x)$

- Explain the architecture of the closed loop control system with a near block diagram with description of each block and signal
- (b) Using the Mason's Gain formula, find the panelly foretime for the agred flow graph shows below.

ż

6E6955 1

PEG

Name of faculty: Tina Bhati Subject with Code: 5EC3-04 Debok, UDAIPUR-313022 (Rel.)

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

UNIT - II

rtuosline.com

Determine the unit ramp response of the second order underdamped system and comment upon the obtained response.

OR

- Determine the unit step response of the second order system for the
 - (a) underdamped case
 - (b) critically damped case
 - (c) undamped case

16

16

1

UNIT - III

regonline.com State the Nyquist stability criteria and skotch the complete Nyquist plot of the following OLTF

 $G(x)H(x) = \frac{s}{s^2(s+2)}$ and comment upon the stability and relative stability of

the corresponding OLTF

16

Oil

A simplified form of the OLTF of an airplane with an autoption in the

longitudinal make is $G(s)H(s) = \frac{E(s+a)}{s(s+b)|s^2 + 2sw_ps + \omega_q^2|}$

system involving an open loop pole in the right half s-plane may be conditionally stable. Swetch the root loci when a = b = 1, Z = 0.5, w. = 4. Find the range

rtusaline.com

6E6055 |

1

. [P.T/O.

UNIT - IV

rtusaline.com

Sketch the Bode Plot of the following transfer function and find GM and PM and comment upon the stability of the system.

$$G(s) = \frac{64(x+2)}{s(x+9.5)(x^2+3.2s+64)}$$

16

- Write the short motes on the following
 - (a) M & N Loci
 - (b) Nichols chart

16

- DNIT V riuonline com
- Derive the solution of the following state equation.
 - (a) Homogeneous State Equation and
 - (b) Non-homogeneous State Equation

DIRECTOR

Geetanjali Institute of Technical Studies

OR Explain all the canonical forms of the state equations and compare them. Dabok, UDAIPUR-313022 (Rail.)

reachline com

6E6055 |

[6969]

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

STUDENT PERFORMANCE REPORT

S. No.	University Roll No.	Student Name	Mid- Term -1 Marks	Mid- Term -2 Marks	Mid- Term Average Marks	
			24	24	24	
1	17EGIEC001	Aayesha Bi	AB	18	18	
2	17EGIEC002	Ajay Devra	18	15	18	
3	17EGIEC003	Akansha Suthar	23	24	24	
4	17EGIEC005	Anchal Agarwal	13	18	18	
5	17EGIEC006	Anisha Kumari Jain	24	24	24	
6	17EGIEC007	Anshuman Singh Chouhan	12	19	19 \	
7	17EGIEC008	Arpit Jain	AB	19	19	
8	17EGIEC009	Azhar Nawajpinjara	15	20	20	
9	17EGIEC012	Deepesh Meena	20	17	20	
10	17EGIEC013	Deepika Choudhari	18	19	19	
11	17EGIEC014	Dhruv Sharma	AB	12	12	
12	17EGIEC015	Divyaraj Singh Dahiya	21	23	23	
13	17EGIEC016	Diya Pushkarna	18	21	21	
14	17EGIEC017	Faiz Alam	16	17	17	
15	17EGIEC018	Gunjan Joshi	12	19	19	
16	17EGIEC019	Harshita Banshal	24	24	24	
17	17EGIEC020	Himanshi Jain	18	17	18	
18	17EGIEC021	Iffat Mazhar	19	20	20	
19	17EGIEC022	Kapil Joshi	AB	15	15	
20	17EGIEC023	Khushi Bhatnagar	AB	19	19	
21	17EGIEC024	Manish Sain	AB	16	16 \	
22	17EGIEC025	Manoj Dadheech	18	18	18	
23	17EGIEC026	Manthan Chaturvedi	AB	13	13	
24	17EGIEC027	Mitali Dawar	20	22	22	
25	17EGIEC029	Mohammed Ujjer Tak	19	17	19	
26	17EGIEC032	Parth Jain	AB	17	17	
27	17EGIEC033	Piyush Ramawat	AB	AB	AB	
28	17EGIEC034	Pratyusha Rathore	20	19	20	
29	17EGIEC035	Rajnish Vaishnav Vairagi	AB	15	15	
30	17EGIEC036	Riya Tyagi	18	18	18	
31	17EGIEC040	Shoaib Akhtar	AB	15	15	
32	17EGIEC041	Soniya Mali	AB	15	15	
33	17EGIEC044	Vaibhav Harit	17	17	17	
34	17EGIEC045	Vaibhav Sharma	19	23	23	
35	17EGIEC300	Riddhi Jain	23	23	23	
36	18EGIEC200	Arpit Joshi	14	15	15	

DIRECTOR

Geetanjali Institute of Technical Studies Dabok, UDAIPUR-313022 (Raj.)

Bal

Signature of Faculty:Name of faculty: Tina Bhati
Subject with Code: 5EC3-04

Signature of HOD

NBA CODE: CO353

(Approved by AICTE, New Delhi and Affiliated to Rajasthan Technical University Kota (Raj.))

DABOK, UDAIPUR, RAJASTHAN 313022

RESULT ANALYSIS

Overall Pass % = 42.42%

		Overall Pass $\% = 42.42\%$							
Subject Code	Subject Name	Total Students	Student Appeared	Total Pass Student	Total Fail Student	Absent	Result Awaited	Pass %	Name of Faculty
5EC 3-01	Computer Architecture	35	32	24	8	3	0	75.00	Mr. Ravi Teli
5EC 4-02	Electromagnetics Waves	35	33	16	17	2	0	48.48	Mr. Rahul Moud
5EC 4-03	Control system	35	33	28	5	2	0	84.85	Ms. Tina Bhati
5EC 4-04	Digital Signal Processing	35	33	23	10	2	0	69.70	Mrs.Meena
5EC 4-05	Microwave Theory & Techniques	35	33	22	11	2	0	66.67	Mr. Md. Sabir
5EC 5-11	Bio-Medical Electronics	35	33	28	5	2	0	84.85	Mr. Anurag Paliwa

CO to PO & PSO Mapping (Target)

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSQ3
CO353.1	3	3	1	1	1	0	0	0	0	0	0	1	3	1	0/
CO353.2	3	3	2	2	1	0	0	0	0	0	0	1	3	1	0
CO353.3	3	3	2	2	1	0	0	0	0	0	0	1	3	1	0
CO353.4	3	3	2	2	1	0	0	0	0	0	0	1	3	1	0
CO353.5	2	2	1	1	1	0	0	0	0	0	0	1	2	1	0
C353 (AVG)	2.8	2.8	1.6	1.6	1	0	0	0	0	0	0	1	2.8	1	0
Final Mapping of C353	3	3	2	2	1	0	0	0	0	0	0	1	3	1	0

CO to PO & PSO Mapping (Target)

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C353 (AVG)	0.67	0.67	0.4	0.4	0.267	0	0	0	0	0	0	0.267	0.67	0.267	0,

CO Attainment Level

CO Attainment Calculation	% of students get >= Target %	CO Attainment Level
No. of Students Attained CO353.1	14	0
No. of Students Attained CO353.2	9	0
No. of Students Attained CO353.3	17	1
No. of Students Attained CO353.4	17	1
No. of Students Attained CO353.5	60	2

Rationale:

If 0-15% Students get >=Target % then Attainment Level=0

If 16-45% Students get >= Target % then Attainment Level=1

If 46-60% Students get >= Target % then Attainment Level=2

If 61-100% Students get >= Target % then Attainment Level=3

DIRECTOR

Gerionia

Institute of Technical Studies

(Talonta aradas (Hall)

Signature of Faculty:

Name of faculty: Tina Bhati Subject with Code: 5EC3-04 Signature of HOD

NRA CODE: CO353